Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(4): 831-845.e19, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301645

RESUMO

The paraneoplastic Ma antigen (PNMA) proteins are associated with cancer-induced paraneoplastic syndromes that present with an autoimmune response and neurological symptoms. Why PNMA proteins are associated with this severe autoimmune disease is unclear. PNMA genes are predominantly expressed in the central nervous system and are ectopically expressed in some tumors. We show that PNMA2, which has been co-opted from a Ty3 retrotransposon, encodes a protein that is released from cells as non-enveloped virus-like capsids. Recombinant PNMA2 capsids injected into mice induce autoantibodies that preferentially bind external "spike" PNMA2 capsid epitopes, whereas a capsid-assembly-defective PNMA2 protein is not immunogenic. PNMA2 autoantibodies in cerebrospinal fluid of patients with anti-Ma2 paraneoplastic disease show similar preferential binding to spike capsid epitopes. PNMA2 capsid-injected mice develop learning and memory deficits. These observations suggest that PNMA2 capsids act as an extracellular antigen, capable of generating an autoimmune response that results in neurological deficits.


Assuntos
Antígenos de Neoplasias , Neoplasias , Proteínas do Tecido Nervoso , Síndromes Paraneoplásicas do Sistema Nervoso , Animais , Humanos , Camundongos , Autoanticorpos , Capsídeo/metabolismo , Epitopos , Neoplasias/complicações , Síndromes Paraneoplásicas do Sistema Nervoso/metabolismo , Síndromes Paraneoplásicas do Sistema Nervoso/patologia , Antígenos de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo
2.
Ann N Y Acad Sci ; 1523(1): 24-37, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36961472

RESUMO

Extracellular vesicles (EVs) are small, lipid-bilayer-bound particles released by cells that can contain important bioactive molecules, including lipids, RNAs, and proteins. Once released in the extracellular environment, EVs can act as messengers locally as well as to distant tissues to coordinate tissue homeostasis and systemic responses. There is a growing interest in not only understanding the physiology of EVs as signaling particles but also leveraging them as minimally invasive diagnostic and prognostic biomarkers (e.g., they can be found in biofluids) and drug-delivery vehicles. On October 30-November 2, 2022, researchers in the EV field convened for the Keystone symposium "Exosomes, Microvesicles, and Other Extracellular Vesicles" to discuss developing standardized language and methodology, new data on the basic biology of EVs and potential clinical utility, as well as novel technologies to isolate and characterize EVs.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Vesículas Extracelulares , Humanos , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Micropartículas Derivadas de Células/metabolismo , RNA/metabolismo
3.
Trends Neurosci ; 44(4): 248-259, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33485691

RESUMO

Viruses and transposable elements are major drivers of evolution and make up over half the sequences in the human genome. In some cases, these elements are co-opted to perform biological functions for the host. Recent studies made the surprising observation that the neuronal gene Arc forms virus-like protein capsids that can transfer RNA between neurons to mediate a novel intercellular communication pathway. Phylogenetic analyses showed that mammalian Arc is derived from an ancient retrotransposon of the Ty3/gypsy family and contains homology to the retroviral Gag polyproteins. The Drosophila Arc homologs, which are independently derived from the same family of retrotransposons, also mediate cell-to-cell signaling of RNA at the neuromuscular junction; a striking example of convergent evolution. Here we propose an Arc 'life cycle', based on what is known about retroviral Gag, and discuss how elucidating these biological processes may lead to novel insights into brain plasticity and memory.


Assuntos
Produtos do Gene gag , Retroelementos , Animais , Comunicação , Evolução Molecular , Produtos do Gene gag/genética , Humanos , Neurônios , Filogenia
4.
Methods Mol Biol ; 2099: 9-20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31883084

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging zoonotic pathogen with a broad host range. The extent of MERS-CoV in nature can be traced to its adaptable cell entry steps. The virus can bind host-cell carbohydrates as well as proteinaceous receptors. Following receptor interaction, the virus can utilize diverse host proteases for cleavage activation of virus-host cell membrane fusion and subsequent genome delivery. The fusion and genome delivery steps can be completed at variable times and places, either at or near cell surfaces or deep within endosomes. Investigators focusing on the CoVs have developed several methodologies that effectively distinguish these different cell entry pathways. Here we describe these methods, highlighting virus-cell entry factors, entry inhibitors, and viral determinants that specify the cell entry routes. While the specific methods described herein were utilized to reveal MERS-CoV entry pathways, they are equally suited for other CoVs, as well as other protease-dependent viral species.


Assuntos
Infecções por Coronavirus/virologia , Genoma Viral/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Internalização do Vírus , Membrana Celular/virologia , Endossomos/virologia , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Peptídeo Hidrolases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30567993

RESUMO

Host factors render cells susceptible to viral infection. One family of susceptibility factors, the tetraspanin proteins, facilitate enveloped virus entry by promoting virus-cell membrane fusion. They also facilitate viral egress from infected cells. In this Gem, we discuss recent insights into how tetraspanins assemble viral entry and exit platforms on cell membranes, and we speculate that tetraspanins contribute to nonviral membrane fusions by similar mechanisms.


Assuntos
Tetraspaninas/metabolismo , Viroses/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/virologia , Humanos , Fusão de Membrana/fisiologia , Viroses/virologia , Internalização do Vírus
6.
PLoS Pathog ; 13(7): e1006546, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28759649

RESUMO

Infection by enveloped coronaviruses (CoVs) initiates with viral spike (S) proteins binding to cellular receptors, and is followed by proteolytic cleavage of receptor-bound S proteins, which prompts S protein-mediated virus-cell membrane fusion. Infection therefore requires close proximity of receptors and proteases. We considered whether tetraspanins, scaffolding proteins known to facilitate CoV infections, hold receptors and proteases together on cell membranes. Using knockout cell lines, we found that the tetraspanin CD9, but not the tetraspanin CD81, formed cell-surface complexes of dipeptidyl peptidase 4 (DPP4), the MERS-CoV receptor, and the type II transmembrane serine protease (TTSP) member TMPRSS2, a CoV-activating protease. This CD9-facilitated condensation of receptors and proteases allowed MERS-CoV pseudoviruses to enter cells rapidly and efficiently. Without CD9, MERS-CoV viruses were not activated by TTSPs, and they trafficked into endosomes to be cleaved much later and less efficiently by cathepsins. Thus, we identified DPP4:CD9:TTSP as the protein complexes necessary for early, efficient MERS-CoV entry. To evaluate the importance of these complexes in an in vivo CoV infection model, we used recombinant Adenovirus 5 (rAd5) vectors to express human DPP4 in mouse lungs, thereby sensitizing the animals to MERS-CoV infection. When the rAd5-hDPP4 vectors co-expressed small RNAs silencing Cd9 or Tmprss2, the animals were significantly less susceptible, indicating that CD9 and TMPRSS2 facilitated robust in vivo MERS-CoV infection of mouse lungs. Furthermore, the S proteins of virulent mouse-adapted MERS-CoVs acquired a CD9-dependent cell entry character, suggesting that CD9 is a selective agent in the evolution of CoV virulence.


Assuntos
Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Receptores Virais/metabolismo , Serina Endopeptidases/metabolismo , Tetraspanina 29/metabolismo , Animais , Infecções por Coronavirus/enzimologia , Infecções por Coronavirus/genética , Dipeptidil Peptidase 4/genética , Humanos , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Receptores Virais/genética , Serina Endopeptidases/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Tetraspanina 29/genética , Internalização do Vírus
7.
Biochim Biophys Acta ; 1851(10): 1406-15, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26225744

RESUMO

Listeria monocytogenes is a psychrotolerant food borne pathogen, responsible for the high fatality disease listeriosis, and expensive food product recalls. Branched-chain fatty acids (BCFAs) of the membrane play a critical role in providing appropriate membrane fluidity and optimum membrane biophysics. The fatty acid composition of a BCFA-deficient mutant is characterized by high amounts of straight-chain fatty acids and even-numbered iso fatty acids, in contrast to the parent strain where odd-numbered anteiso fatty acids predominate. The presence of 2-methylbutyrate (C5) stimulated growth of the mutant at 37°C and restored growth at 10°C along with the content of odd-numbered anteiso fatty acids. The C6 branched-chain carboxylic acids 2-ethylbutyrate and 2-methylpentanoate also stimulated growth to a similar extent as 2-methylbutyrate. However, 3-methylpentanoate was ineffective in rescuing growth. 2-Ethylbutyrate and 2-methylpentanoate led to novel major fatty acids in the lipid profile of the membrane that were identified as 12-ethyltetradecanoic acid and 12-methylpentadecanoic acid respectively. Membrane anisotropy studies indicated that growth of strain MOR401 in the presence of these precursors increased its membrane fluidity to levels of the wild type. Cells supplemented with 2-methylpentanoate or 2-ethylbutyrate at 10°C shortened the chain length of novel fatty acids, thus showing homeoviscous adaptation. These experiments use the mutant as a tool to modulate the membrane fatty acid compositions through synthetic precursor supplementation, and show how existing enzymes in L. monocytogenes adapt to exhibit non-native activity yielding unique 'unnatural' fatty acid molecules, which nevertheless possess the correct biophysical properties for proper membrane function in the BCFA-deficient mutant.


Assuntos
Ácidos Carboxílicos/metabolismo , Ácidos Graxos/metabolismo , Listeria monocytogenes/metabolismo , Fluidez de Membrana , Mutação , Ácidos Graxos/genética , Listeria monocytogenes/genética
8.
J Virol ; 89(11): 6093-104, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25833045

RESUMO

UNLABELLED: Coronaviruses (CoVs) and low-pathogenicity influenza A viruses (LP IAVs) depend on target cell proteases to cleave their viral glycoproteins and prime them for virus-cell membrane fusion. Several proteases cluster into tetraspanin-enriched microdomains (TEMs), suggesting that TEMs are preferred virus entry portals. Here we found that several CoV receptors and virus-priming proteases were indeed present in TEMs. Isolated TEMs, when mixed with CoV and LP IAV pseudoparticles, cleaved viral fusion proteins to fusion-primed fragments and potentiated viral transductions. That entering viruses utilize TEMs as a protease source was further confirmed using tetraspanin antibodies and tetraspanin short hairpin RNAs (shRNAs). Tetraspanin antibodies inhibited CoV and LP IAV infections, but their virus-blocking activities were overcome by expressing excess TEM-associated proteases. Similarly, cells with reduced levels of the tetraspanin CD9 resisted CoV pseudoparticle transductions but were made susceptible by overproducing TEM-associated proteases. These findings indicated that antibodies and CD9 depletions interfere with viral proteolytic priming in ways that are overcome by surplus proteases. TEMs appear to be exploited by some CoVs and LP IAVs for appropriate coengagement with cell receptors and proteases. IMPORTANCE: Enveloped viruses use their surface glycoproteins to catalyze membrane fusion, an essential cell entry step. Host cell components prime these viral surface glycoproteins to catalyze membrane fusion at specific times and places during virus cell entry. Among these priming components are proteases, which cleave viral surface glycoproteins, unleashing them to refold in ways that catalyze virus-cell membrane fusions. For some enveloped viruses, these proteases are known to reside on target cell surfaces. This research focuses on coronavirus and influenza A virus cell entry and identifies TEMs as sites of viral proteolysis, thereby defining subcellular locations of virus priming with greater precision. Implications of these findings extend to the use of virus entry antagonists, such as protease inhibitors, which might be most effective when localized to these microdomains.


Assuntos
Coronavirus/fisiologia , Vírus da Influenza A/fisiologia , Microdomínios da Membrana/virologia , Tetraspaninas/metabolismo , Ligação Viral , Internalização do Vírus , Animais , Humanos , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Peptídeo Hidrolases/análise , Proteólise , Receptores Virais/análise , Proteínas Virais de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...